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ABSTRACT 

Solar Photovoltaic (PV) systems are increasingly vital to modern power grids. However, their 

power output is highly sensitive to fluctuating environmental conditions like solar irradiance and 

temperature, leading to a non-linear power-voltage (P-V) characteristic with a unique Maximum 

Power Point (MPP). To maximize energy harvest, Maximum Power Point Tracking (MPPT) 

algorithms are crucial. Traditional MPPT techniques, such as Perturb and Observe (P&O) and 

Incremental Conductance (IncCond), often suffer from slow response times, oscillations around 

the MPP, and limitations under partial shading conditions (PSCs). This review paper 

comprehensively examines the application of Neural Networks (NNs) in MPPT for solar PV 

systems, focusing on their ability to significantly enhance dynamic response. We delve into 

various NN architectures and training methodologies, highlighting their advantages over 

conventional methods in terms of tracking speed, accuracy, and robustness, particularly under 

rapidly changing atmospheric conditions and PSCs. A detailed literature review of the last ten 

years (2015-2025) is presented, followed by a discussion of the methods, advantages, and a 
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comparative analysis. Finally, we address the recent challenges in NN-based MPPT and outline 

promising future directions for research in this field. 
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INTRODUCTION 

The escalating global energy demand and the pressing need to mitigate climate change have 

propelled renewable energy sources, especially solar photovoltaic (PV) systems, to the forefront 

of sustainable development [1]. Solar PV systems convert sunlight directly into electricity, 

offering a clean and abundant energy supply. However, the inherent variability of solar 

irradiance and ambient temperature profoundly affects the power output of PV panels, leading to 

a non-linear power-voltage (P-V) characteristic. To extract the maximum possible power from 

the PV array under these varying conditions, Maximum Power Point Tracking (MPPT) 

techniques are indispensable [2], [3]. 

Conventional MPPT algorithms, such as Perturb and Observe (P&O) and Incremental 

Conductance (IncCond), are widely adopted due to their simplicity and ease of implementation 

[4]. Nevertheless, these methods face significant limitations, including slow tracking speed, 

steady-state oscillations around the MPP, and a susceptibility to getting trapped in local maxima 

under partial shading conditions (PSCs). PSCs occur when different parts of a PV array receive 

varying levels of sunlight, resulting in multiple peaks in the P-V curve, making it challenging for 

traditional algorithms to locate the true Global Maximum Power Point (GMPP) [5]. 

In recent years, Artificial Intelligence (AI) techniques, particularly Neural Networks (NNs), have 

emerged as a powerful solution to overcome the limitations of conventional MPPT methods. 

NNs, with their inherent ability to learn complex non-linear relationships from data, offer a 
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promising avenue for improving the dynamic response, accuracy, and robustness of MPPT 

controllers [6]. By leveraging historical and real-time environmental and electrical data, NNs can 

predict and track the MPP more efficiently, even under highly dynamic and challenging 

conditions. This paper provides a comprehensive review of NN-based MPPT strategies, 

highlighting their contribution to enhanced dynamic response in solar PV-integrated power 

networks. 

LITERATURE REVIEW OF LAST 10 YEARS (2015-2025) 

Over the past decade, research in NN-based MPPT has significantly advanced, demonstrating its 

potential to overcome the shortcomings of traditional methods. 

In the mid-2010s, initial studies focused on basic Artificial Neural Network (ANN) architectures 

for MPP prediction. For instance, in 2016, a study explored variable step-size ANN MPPT 

controllers, demonstrating improvements in tracking accuracy, response time, and steady-state 

ripple compared to fixed step-size approaches [7]. Many early ANN-based MPPT systems 

typically used environmental inputs like solar irradiance and temperature to estimate the MPP 

voltage or current [8], [9]. These studies often highlighted the ANN's ability to provide faster and 

more precise tracking than conventional methods, especially under sudden changes in 

environmental conditions [10]. 

As the decade progressed, the focus shifted towards improving the robustness and adaptability of 

NN-based MPPT, particularly under challenging scenarios like partial shading. Hybrid 

approaches gained prominence, combining NNs with other intelligent techniques or conventional 

algorithms. For example, some researchers integrated NNs with Fuzzy Logic (FL) or 

metaheuristic algorithms to enhance performance under PSCs, aiming for faster convergence to 

the GMPP and reduced oscillations [11], [12]. 

More recently (2020-2025), deep learning architectures and advanced training strategies have 

been explored. Long Short-Term Memory (LSTM) networks, a type of Recurrent Neural 
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Network (RNN), have been utilized to leverage the sequential nature of environmental data, 

leading to superior power tracking accuracy under changing solar conditions [13]. Reinforcement 

Learning (RL) combined with NNs has also shown promise in dynamically optimizing power 

flow and energy management in grid-integrated PV systems with battery storage, demonstrating 

reduced convergence time and lower complexity [14]. 

Several studies in this period emphasize the significant improvements achieved by ANN-based 

MPPT systems. A recent study (published in 2025 but accessible in 2024) indicated that ANN-

based MPPT systems improved efficiency by up to 15% and achieved a 25% increase in 

response speed compared to traditional techniques, particularly under partial shading and rapid 

irradiance variations [15]. Another paper highlighted the use of NNs to dynamically adjust the 

duty cycle change in P&O algorithms, enabling rapid adjustments to variations in solar 

irradiance and achieving lower settling times [16]. The development of novel ANN architectures 

designed to address the non-linear characteristics of solar PV systems has also been reported, 

leading to improved efficiency and reduced response time, especially under dynamic operating 

conditions [15]. 

Overall, the literature clearly demonstrates a trend towards more sophisticated NN architectures, 

hybrid approaches, and data-driven training methodologies to enhance the dynamic response, 

accuracy, and robustness of MPPT in increasingly complex solar PV-integrated power networks. 

METHODS 

Neural Network-based MPPT primarily relies on the learning capabilities of NNs to establish the 

complex non-linear relationship between environmental parameters (irradiance, temperature) or 

electrical parameters (voltage, current) and the corresponding Maximum Power Point (MPP) of a 

PV system. The general methodology involves the following key steps: 

1. Data Collection and Preprocessing: 
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o Data Acquisition: Real-world or simulated data of PV panel characteristics (voltage, current, 

power) under varying irradiance and temperature conditions are collected. For robust training, 

data should encompass a wide range of operating conditions, including partial shading scenarios 

[15]. 

o Feature Selection: Input features for the NN typically include solar irradiance (G), module 

temperature (T), PV voltage (VPV), and/or PV current (IPV). The output often includes the 

optimal voltage (VMPP), optimal current (IMPP), or the duty cycle (D) of the DC-DC converter 

[10], [13]. 

o Normalization: Input and output data are often normalized to a specific range (e.g., [0, 1]) to 

improve training stability and convergence speed of the NN. 

2. Neural Network Architecture Design: 

o Type of NN: 

 Feedforward Neural Networks (FNNs) / Multilayer Perceptrons (MLPs): These are the most 

common NNs used for MPPT due to their ability to approximate complex non-linear functions. 

They consist of an input layer, one or more hidden layers, and an output layer [1], [6]. 

 Recurrent Neural Networks (RNNs) / Long Short-Term Memory (LSTM): LSTMs are 

particularly useful for handling sequential data and time-series predictions, making them suitable 

for dynamic and rapidly changing environmental conditions [13]. 

 Radial Basis Function Networks (RBFNs): RBFNs offer fast learning and good generalization 

capabilities, often used for their ability to handle non-linear mappings effectively. 

o Number of Layers and Neurons: The optimal number of hidden layers and neurons depends on 

the complexity of the problem and the size of the training data. This is often determined through 

trial and error or optimization techniques. 

o Activation Functions: Common activation functions include sigmoid, ReLU (Rectified Linear 

Unit), and tanh, which introduce non-linearity into the network. 

3. Training the Neural Network: 

o Training Algorithm: 

 Backpropagation: This is the most widely used algorithm for training FNNs, adjusting the 

network's weights and biases to minimize the error between predicted and actual outputs [9]. 
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 Metaheuristic Algorithms (e.g., Particle Swarm Optimization (PSO), Genetic Algorithms 

(GA)): These optimization algorithms can be used to fine-tune NN parameters (weights, biases, 

or even network topology) for better accuracy and convergence [12]. 

 Reinforcement Learning (RL): In RL-based MPPT, an agent learns to make optimal decisions 

(e.g., duty cycle adjustments) by interacting with the PV system environment and receiving 

rewards for successful power tracking [14]. 

o Dataset Splitting: The collected dataset is typically divided into training, validation, and testing 

sets to ensure the network's generalization capability and prevent overfitting. 

4. Deployment and Control: 

o Once trained, the NN is implemented as the core of the MPPT controller. The inputs to the NN 

(e.g., PV voltage and current measurements) are fed, and the output (e.g., optimal duty cycle for 

a DC-DC converter) is generated in real-time. 

o This output then controls a power converter (e.g., boost converter, buck-boost converter) to drive 

the PV panel to its MPP [6], [17]. 

5. Hybrid Approaches: 

o Many recent studies propose hybrid MPPT techniques that combine NNs with conventional 

methods (e.g., P&O-ANN, IncCond-ANN) or other AI techniques (e.g., Fuzzy-ANN) [11], [16]. 

These hybrid approaches often aim to leverage the strengths of both methods, such as the fast 

tracking of NNs and the simplicity or robustness of traditional algorithms. For example, an ANN 

might be used to provide a good initial estimate of the MPP or to adjust the step size of a P&O 

algorithm during rapid changes [16]. 

The effectiveness of NN-based MPPT largely depends on the quality and diversity of the training 

data, the chosen NN architecture, and the optimization strategy employed during training. 

ADVANTAGES 

Neural Network-based MPPT offers several significant advantages over conventional techniques, 

particularly for improving the dynamic response of solar PV-integrated power networks: 
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1. Fast Tracking Speed and Improved Dynamic Response: NNs, once trained, can provide a 

rapid and accurate estimation of the MPP. Unlike iterative traditional methods (like P&O or 

IncCond) that require multiple perturbations to track changes, NNs can directly map input 

parameters to the optimal operating point, leading to significantly faster convergence, especially 

under rapidly changing irradiance and temperature conditions [6], [10]. This rapid response is 

crucial for maximizing energy harvest in dynamic environments [16]. 

2. Higher Accuracy and Efficiency: NNs can learn complex, non-linear relationships within the 

PV system's characteristics. This allows them to predict the MPP with greater precision 

compared to conventional methods, which may rely on simplified models or approximations. 

This enhanced accuracy translates to a higher overall energy yield from the PV system [15], [17]. 

3. Robustness under Partial Shading Conditions (PSCs): One of the most significant advantages 

of NN-based MPPT is its superior performance under PSCs. Traditional algorithms often get 

stuck at local maxima on the multi-peaked P-V curve under shading. Trained NNs, however, can 

learn to identify the global maximum power point (GMPP) by recognizing complex patterns in 

the input data, leading to more efficient operation even with varying shading patterns [5], [15]. 

4. Adaptability and Learning Capability: NNs are inherently adaptive. Once trained on a diverse 

dataset, they can generalize and adapt to unseen environmental conditions. This "learning" 

capability allows them to maintain optimal performance even as external factors fluctuate 

widely, making them more robust than fixed-logic algorithms [15]. 

5. Reduced Oscillations at Steady State: Unlike P&O which continuously perturbs around the 

MPP, leading to oscillations and power loss, a well-trained NN can converge directly to the MPP 

with minimal or no oscillations, improving the steady-state efficiency of the system [1], [5]. 

6. Potential for Sensor Reduction: While many NN models use multiple inputs (irradiance, 

temperature, voltage, current), some advanced models have shown the potential to track the MPP 

effectively with fewer sensor inputs, such as solely using current measurements, which can 

reduce system complexity and cost [16]. 

7. Integration with Advanced Control Strategies: NNs can be easily integrated with other 

advanced control strategies, such as fuzzy logic controllers or metaheuristic optimization 
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algorithms, to create powerful hybrid MPPT systems that combine the strengths of different 

approaches [11], [12]. 

These advantages collectively position NN-based MPPT as a highly effective solution for 

improving the performance and reliability of solar PV systems, particularly in grid-integrated 

applications where dynamic response and efficiency are paramount. 

COMPARISON TABLE 

Here's a comparison table summarizing the key characteristics of Neural Network (NN) based 

MPPT versus conventional methods like Perturb and Observe (P&O) and Incremental 

Conductance (IncCond): 

Feature/Method 
Perturb and Observe 

(P&O) 

Incremental 

Conductance 

(IncCond) 

Neural 

Network (NN) 

Based MPPT 

Principle 

Perturbs 

voltage/current and 

observes power 

change. 

Compares 

incremental and 

instantaneous 

conductance. 

Learns 

complex non-

linear 

mapping from 

input to MPP. 

Tracking Speed 
Slow, especially under 

rapid changes. 

Faster than P&O, 

but still iterative. 

Very fast 

(once trained), 

direct 

estimation of 

MPP. 
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Feature/Method 
Perturb and Observe 

(P&O) 

Incremental 

Conductance 

(IncCond) 

Neural 

Network (NN) 

Based MPPT 

Accuracy 
Moderate, oscillations 

around MPP. 

High, reduced 

oscillations 

compared to P&O. 

Very high, 

precise 

tracking. 

Dynamic Response 

Poor, struggles with 

rapid 

irradiance/temperature 

changes. 

Improved over 

P&O, but can still 

lag in highly 

dynamic conditions. 

Excellent, 

highly 

adaptive to 

rapid 

environmental 

changes. 

Partial Shading 

(PSC) Robustness 

Poor, susceptible to 

local maxima. 

Poor, susceptible to 

local maxima. 

Excellent, can 

identify 

Global MPP. 

Steady-State 

Oscillations 

Significant 

oscillations around 

MPP. 

Reduced oscillations 

compared to P&O. 

Minimal to 

none, smooth 

operation. 

Complexity 
Low, simple to 

implement. 

Moderate, requires 

more 

sensors/computation 

than P&O. 

High (training 

phase), 

moderate 

(real-time 

operation). 
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Feature/Method 
Perturb and Observe 

(P&O) 

Incremental 

Conductance 

(IncCond) 

Neural 

Network (NN) 

Based MPPT 

Sensor 

Requirements 
Voltage, Current. Voltage, Current. 

Typically 

Voltage, 

Current, 

Irradiance, 

Temperature 

(can vary). 

Computational 

Overhead 
Low. Low to moderate. 

High 

(training), 

Low to 

moderate 

(inference). 

Tuning/Calibration 
Minimal, fixed step 

size. 

Moderate, adaptive 

step size variations 

exist. 

Requires 

extensive 

training data 

and careful 

tuning of 

parameters. 

Learning 

Capability 
None. None. 

High, can 

adapt to 

diverse 

operating 

conditions. 
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Feature/Method 
Perturb and Observe 

(P&O) 

Incremental 

Conductance 

(IncCond) 

Neural 

Network (NN) 

Based MPPT 

Initial Conditions 

Dependency 

Can be affected by 

initial perturbation 

direction. 

Less dependent than 

P&O. 

Less 

dependent, 

can quickly 

converge from 

any starting 

point. 

This table highlights the superior performance of NN-based MPPT in terms of speed, accuracy, 

dynamic response, and robustness under partial shading, albeit at the cost of higher initial 

complexity due to training requirements. 

RECENT CHALLENGES 

Despite the significant advancements and advantages of Neural Network-based MPPT, several 

challenges persist that require further research and development: 

1. Data Dependency and Training Complexity: 

o Large Dataset Requirement: Training robust NNs for MPPT demands vast and diverse datasets 

encompassing a wide range of operating conditions, including varying irradiance, temperature, 

and partial shading scenarios [15]. Acquiring such comprehensive real-world data can be time-

consuming and resource-intensive. 

o Data Quality: The performance of the NN is highly sensitive to the quality and accuracy of the 

training data. Noisy or incomplete data can lead to poor generalization and inaccurate MPP 

tracking. 
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o Computational Cost of Training: Training complex deep neural networks can be 

computationally intensive, requiring significant processing power and time. This can be a barrier 

for real-time online learning or deployment on low-cost microcontrollers. 

2. Generalization and Adaptability to Unseen Conditions: 

o While NNs are good at generalizing, their performance might degrade significantly if they 

encounter operating conditions outside the range of their training data (e.g., extreme weather 

events, unforeseen shading patterns). 

o Ensuring the trained NN can effectively handle long-term variations in environmental conditions 

and PV panel degradation over time remains a challenge [13]. 

3. Real-Time Implementation and Hardware Limitations: 

o Deploying complex NN models on embedded systems or low-cost microcontrollers for real-time 

MPPT can be challenging due to limited computational resources (memory, processing power) 

[9]. 

o The trade-off between model complexity (for accuracy) and computational efficiency (for real-

time execution) is a critical design consideration. 

4. Optimal Network Architecture and Hyperparameter Tuning: 

o Determining the optimal NN architecture (number of layers, neurons, activation functions) and 

hyperparameters (learning rate, batch size) for a specific PV system and operating environment 

is often a trial-and-error process, requiring expert knowledge and extensive experimentation [7]. 

5. Robustness Against Sensor Noise and Faults: 

o NN-based MPPT algorithms can be sensitive to sensor noise and measurement inaccuracies. 

Developing techniques to make them more robust against such disturbances is important for 

reliable operation. 

o Handling sensor failures or drifts gracefully is another critical aspect for practical deployment. 

6. Cybersecurity Concerns in Grid-Integrated Systems: 
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o As PV systems become more interconnected and integrate AI, cybersecurity concerns arise, 

especially in grid-integrated power networks. Protecting the training data and the deployed NN 

models from malicious attacks or data manipulation is crucial. 

7. Cost-Effectiveness for Small-Scale Applications: 

o While the performance benefits are clear, the initial development and deployment costs of 

sophisticated NN-based MPPT systems might still be a limiting factor for small-scale residential 

or off-grid PV applications. 

Addressing these challenges is vital for the widespread adoption and successful integration of 

NN-based MPPT into the next generation of solar PV-integrated power networks. 

FUTURE DIRECTIONS 

The field of Neural Network-based MPPT for solar PV systems is continuously evolving, with 

several exciting avenues for future research and development: 

1. Reinforcement Learning (RL) and Adaptive Learning: 

o Further exploration of RL techniques for online, adaptive MPPT. RL agents can learn optimal 

tracking strategies directly from interaction with the PV system, eliminating the need for 

extensive pre-collected datasets and allowing the system to adapt to long-term changes and 

degradation [14], [18]. 

o Investigating self-learning and self-correcting MPPT algorithms that can continuously improve 

their performance based on real-time operational data. 

2. Deep Learning for Complex Scenarios: 

o Utilizing more advanced deep learning architectures, such as Convolutional Neural Networks 

(CNNs) for image-based shading analysis or Graph Neural Networks (GNNs) for multi-array PV 

systems, to capture intricate spatial and temporal patterns in complex partial shading conditions. 

o Exploring deep reinforcement learning (DRL) to handle highly dynamic and uncertain 

environments, potentially leading to more robust and intelligent MPPT controllers. 



ISSN: 2583-5637 (Online) 

International journal of Inventive Research in Science and Technology 

Volume 4 Issue 8 August 2025 

 

14 
 

 

3. Hybrid AI Approaches and Meta-heuristics: 

o Developing novel hybrid MPPT strategies that combine the strengths of NNs with other AI 

techniques (e.g., fuzzy logic, genetic algorithms, particle swarm optimization) or even traditional 

methods in a more sophisticated manner. This could involve using NNs for initial prediction, 

with other algorithms for fine-tuning or global search under specific conditions [11], [12]. 

4. Edge AI and Embedded System Optimization: 

o Focusing on optimizing NN models for deployment on low-cost, low-power embedded systems 

(e.g., microcontrollers, FPGAs) at the "edge" of the PV system. This involves techniques like 

model quantization, pruning, and efficient network architectures to reduce computational and 

memory requirements without significant performance degradation. 

o Developing specialized hardware accelerators for NN inference in MPPT applications. 

5. Predictive MPPT with Weather Forecasting Integration: 

o Integrating real-time weather forecasts (irradiance, temperature, cloud cover) as inputs to the NN 

to enable proactive and predictive MPPT. This could allow the system to anticipate changes and 

adjust the operating point even before the environmental conditions fully manifest, leading to 

even faster dynamic response and higher energy yield [4], [18]. 

6. Data Augmentation and Synthetic Data Generation: 

o Research into techniques for generating high-quality synthetic PV data to augment real-world 

datasets, especially for rare or extreme operating conditions. This can help in training more 

robust NNs and reducing reliance on extensive physical data collection. 

7. Explainable AI (XAI) for MPPT: 

o Developing methods to make NN-based MPPT algorithms more "interpretable" or "explainable." 

Understanding how the NN makes its decisions can help in debugging, improving trust, and 

validating its behavior in critical power system applications. 

8. Fault Detection and Diagnosis Integration: 
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o Leveraging the pattern recognition capabilities of NNs to integrate fault detection and diagnosis 

(FDD) functionalities within the MPPT controller. This could enable the system to identify and 

respond to common PV system faults (e.g., panel degradation, wiring issues) while 

simultaneously optimizing power extraction. 

These future directions suggest a strong emphasis on developing more autonomous, intelligent, 

and efficient NN-based MPPT solutions that are well-suited for the increasingly complex and 

dynamic nature of modern solar PV-integrated power networks. 

CONCLUSION 

Neural Network-based Maximum Power Point Tracking has emerged as a transformative 

technology for solar PV-integrated power networks, significantly addressing the limitations of 

conventional MPPT techniques. This review paper has highlighted how NNs, with their inherent 

ability to learn complex non-linear relationships, offer superior dynamic response, higher 

tracking accuracy, and enhanced robustness, particularly under rapidly fluctuating environmental 

conditions and challenging partial shading scenarios. The comprehensive literature review of the 

past decade underscores the consistent advancements in this field, moving from basic ANN 

architectures to more sophisticated deep learning and reinforcement learning approaches. 

While challenges such as data dependency, training complexity, and real-time implementation on 

constrained hardware still exist, the ongoing research into adaptive learning, hybrid AI methods, 

and edge computing promises to overcome these hurdles. The future directions point towards 

even more intelligent, self-optimizing, and resilient MPPT systems, capable of integrating 

predictive capabilities and advanced fault diagnostics. As solar PV penetration in power grids 

continues to grow, the role of sophisticated NN-based MPPT algorithms will become 

increasingly critical in maximizing energy harvesting, ensuring grid stability, and accelerating 

the global transition towards sustainable energy. 
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